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Overview

In this report we examine in detail the continuum mechanical issues necessary for rig
specification of large deformation problems in solid mechanics. The discussion will
provide a bridge between the generic problem statement given at the dtosmolation

of Nonlinear Problemsand the in-depth presentation of constitutive theory to be
discussed itConstitutive Modeling. At the close of the latter report, we will be in a
position to turn attention to numerical methods as applied to large deformation solid
mechanics.

The current report’s presentation is organized as follows. We begin with a discussior
large deformation kinematics, including consideration of velocity and acceleration
measures and the quantification of deformation and deformation rates in a general c«
We then discuss the various measures of stress that are frequently encountered in |
deformation analysis. With these preliminaries in hand, we will then be in a position
state the relevant balance laws in notation appropriate for large deformation problem
will also at this point discuss the important concept of material frame indifference, w
demands that material laws be unaltered by rigid body motions. We will see that this
concept places important restrictions on the kinematic and stress measures that are
suitable for prescription of constitutive laws, providing important background informa
for a subsequent report.

The above information will be presented in a three-dimensional notational frameworl
assuming that the solids of interest are likewise fully three-dimensional continua.
Formulations appropriate for two-dimensional problems and for structural entities in t
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dimensions can be readily deduced from these equations. Accordingly, we will briefl:
present the modifications necessary to adapt our theory to two-dimensional geomet
and to problems possessing axial symmetry. Also we will discuss how continuum
mechanical descriptions of structural elements, including shells and beams, can be
deduced from the three-dimensional formalism. We will also briefly examine how rigi
bodies can be incorporated into the notational structure we propose.

It should be emphasized that although many of the concepts to be discussed in this c
are applicable to Eulerian formulations, the presentation is targeted primarily toward
Lagrangian description of boundary value problems. Furthermore, for notational
simplicity we work almost exclusively in Cartesian coordinate systems rather than in
general curvilinear coordinates (some deviation from this is obviously necessary wh
axisymmetry is discussed). The interested reader may care to ¢bnsgitY.C., 1965]
for discussion of such curvilinear formulations in a small-strain contex{Mardden,
J.E. and Hughes, T.J.R., 1983for their rigorous extension to large deformation
problems.
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Measures of Deformation

We continue using the notation from the last regeotrfulation of Nonlinear
Problems) that was presented schematicallyigure 1.7. We restrict our attention to

some timet (0, T) , and consider the corresponding configuration mépping , wi

can be mathematically representedcm'a(_z L o® . d&érmation gradient F is
given by the gradient of this transformation, i.e.:

aq)t
F = 3% (2.1)
or in indices:
0d .

In (2.2) one may notice a notational feature we will use unless otherwise noted: lowe!
indices are to be associated with coordinates in the spatial frame, while upper case |
are associated with material coordinates. Repeated indices in expressions will contil
imply summation.

The deformation gradient is the most basic object used to quantify the local deformat
a point in a solid. Most kinematic measures and concepts we will discuss rely on it
explicitly or implicitly for their definitions. For example, we can use our knowledge of
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elementary calculus to give an interpretation of the determindnt of . Consider a cul
material in the reference configuration (see Figure 2.1) whose sides can be assume

aligned with the coordinate ax&s | ,= 1,2, 3 . The initial differential volate o
this cube is given by

dV = dX,dX,dXs. (2.3)

If we now consider the condition of this cube of material after the deformtion  is

applied, we notice that its volume in the current configuratn IS that of the
parallelepiped spanned by the three ve(m?r(sT(J) , Where the naﬁjon IS USE

indicate a reference vector in coordinate direcfiomth magnitudedX; . This volume
can be written in terms of the vector triple product:

dv = ¢, (dX;) Qo (d%,) x ¢, (dX3)). (2.4)
I

~&

5 -~

[] -1

t

Figure 2.1 Concept of volume change: deformation of a volume element as described by the
configuration mapping ¢, .
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If we consider any differential vectdR in the reference configuration, the calculus
differentials tells us that application of the mapping will produce a differential vec

dr = o, (cﬁ) whose coordinates are given via

09y

(dr)i = 5= (AR (2.5)
L X
Application of this logic to the particular differential vect«nlﬁJ leads one to concluc
[]
OF ,dX,J =1
. ]
(¢; (dX;)); = EFi ,dX,,J =2 . (2.6)
E F. ,dX3,J =3

We can writg(2.4) in indicial notation by first noting that the cross product of two vectc
a andb is written as

(axb); = ey a;by, (2.7)

wheree ., , thgpermutation symbol, has the following interpretation:
ijk ®
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J1if(ij k ) =(1,2,3)or (2,3,1) or (3,1,2)
—1if (i j k )=(3,2,1) or (2,1,3) or (1,3,2) (2.8)
] O otherwise

1

Cik =

Equation(2.4) is then reexpressed via

dv = F;dXg(ej, Fj ,d%,FadXs)

, 2.9
= ey Fi 4 Fj oFa0XdX,dX, = det(F)dV (29)

where we have used H@.3) and the fact thadet(F) = ek Fiq1Fj2Fks (which can be

i1 ]2
verified through actual trial). Introducing the notatibre= det(F) , we conclude

dv = Jadv. (2.10)

Equation (2.10) tells us that the deformatfgn converts reference differential volun

dV to current volumesdlv  according to the determinant of the deformation gradient.

this mapping to make physical sense, the current votlnme should be positive whi
then places a physical restriction ugothat must be obeyed pointwise throughout the
medium:

J = def(F) = de%w. (2.11)
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This physical restriction has important mathematical consequences as well. Accordil
the inverse function theorem of multivariate calculus, a smooth function whose gradi
has a nonzero determinant possesses a smooth and differentiable inverse. Since we

assumedp, to be smooth and physical restrictions demandl #Git , We can conc

that a functiorq)t_1 exists that is differentiable; in fact, the gradient of this function is

given by
-1
aq)t -1
= F . (2.12)
We will assume throughout the remainder of our discussion) thdi , SO that such

inverse is guaranteed to exist.

With the definition of- in hand, we turn our attention to the quantification of local
deformation in a body. For any matrix, suclFasvhose determinant is positive, the
following decompositions can always be made:

F=RU= VR (2.13)

In (2.13)R Is a proper orthogonal tensor (right-nanded rotation), While Vand are
positive definite and symmetric tensors. One can show that under the conditions stat
decompositions in (2.13) can always be made and that, in fact, they are unique. The
interested reader should cond@urtin, M.E., 1981], Chapter 1 for details. The
decompositions in (2.13) are called right and left polar decompositidhse$pectively.
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R is often called the rotation tensor, while axd are sometimes referred to as the
and left stretches.

The significance of the polar decomposition is made more clé€agune 2.2, where we

consider the deformation of a neighborhood of material surrounding aXoiG2
Equation(2.5) shows us that the full deformation gradient maps arbitrary reference

differentials into their current positions at tirne ; this idea also applies to neighborht
of material having infinitesimal extent. By considering the polar decomposition, we s
that this deformation of material neighborhoods can always be conceived as consist

two parts. Considering the right polar decomposition as an exabhple, contains all

information necessary to describe the distortion of a neighborhood of materialRwhile
then maps this distorted volume into the current configuration through pure (right-har

rotation. In consideration of the left decomposition, the rotd®on is considered first,
followed by the distortiorY . In developing measures of local deformation, we can th
concentrate our attention on eitheér \or . The choice of which decomposition to us
typically based on the coordinates in which we wish to write strains: the right stketch

most naturally takes reference coordinates as arguments, while the left\étretch is
ordinarily written in terms of spatial coordinates. We might indicate this explicitly via

F(X) = R(U(X) = V(9 (X))R(X). (2.14)

In characterizing large deformations, it is convenient also to define the right and left
Cauchy-Green tensors via

C=FF (2.15)
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and

.I_
B=FF. (2.16)
VoS e
Y e _
X = 0 (X)
F 0
~~J N
\\
~
PR R \>'—
/’ \\ //
1 \ //
|\\ X. /)U\ "—‘—_V\/
3 \\_‘,/ I,/ .”’/

Figure 2.2 Physical interpretation of the polar decomposition. (Dotted outline indicates a
neighborhood of point X.)

The right Cauchy-Green tensor is ordinarily considered to be a material object (i.e.,
C(X)), while the left Cauchy-Green tensor is a spatial obfg@p((X)) . $Hnce s

orthogonal, one can write
RR=RR =1, (2.17)

wherel is the 3x3 identity tensor. Using this fact and manipulating(Ed4.)(2.16)
also reveals that

1
Uu= ¢ (2.18)

and
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1
VvV = B%. (2.19)

One can see the point of connection with the small strain theory by considerg&me
strain tensor E, defined with respect to the reference configuration:

1
E = 5(C-1). (2.20)

Let us define a reference configuration displacementdield , such that
u(X) = ¢(X)-X. (2.21)

Working in indicial notation, let us attempt to wrke  in termsuof

1 1
E; = ‘(ClJ -0 ) = Q(Fil Fis —93)

_1pgo 0

= [b—(u + X )GX( +X ) - 6|J[|

- 1Y, +J, D+ED + 0, %6 % | (222
2% i % a5onY

_ 1D .5 0 ou; ou; [

= 3 ax ax, i) 0 gyl + 5 axJDD
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In the case where the displacement gradients are sma

T «1 , the quadratic
X;

in (2.22)will be much smaller than the terms linear in the displacement gradients. If,
addition, the displacement components  are very small when compared with the s

the body, then the distinction between reference and spatial coordinates becomes
unnecessary and E.22) simplifies to

. 100y, +6uJD 5o
3% 200%; T ax, (2.23)

which is recognized as being identical with the infinitesimal case (c.{1E).
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Introduction

The development of the last section fixed our attention on an instago, T) , and
proposed some measurements of material deformation in terms of the configuration

mapping¢, . We now allow time to vary and consider two questions: 1) how velocitie

and accelerations are quantified in both the spatial and reference frames; and 2) ho
derivatives of deformation measures are properly considered in a large deformation
framework. The former topic is obviously crucial in the formulation of dynamics
problems, while the latter is necessary, for example, in rate-dependent materials wh
guantities, such as strain rate, must be quantified.
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Material and Spatial Velocity and
Acceleration

One obtains thenaterial velocity V and thematerial accelerationA by fixing attention
on a particular material particle (i.e., fixing the reference coordf)atnd then
considering successive (partial) time derivatives of the mdt{oft ) . This can be
written mathematically as

VX t) = 2o(xt) (2.24)

and

d 9°
AXt) = WV(Xt )= at—Z(q)(X’t ). (2.25)

Note in Egs. (2.24) and (2.25) thaandA takeX as their first argument; hence their
designation as material quantities. A Lagrangian description of motion, in which refer
coordinates are the independent variables, would most naturally use these measure
velocity and acceleration.

An Eulerian description, on the other hand, would, in general, require measures writ
terms of pointx, without requiring explicit knowledge of material poiktsThespatial
velocity v and thespatial accelerationa are obtained from (2.24) and (2.25) through a
change of variables:
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VX, t) = V(0 (X),t) =V, » 07 (X) (2.26)

and

a(x,t) = A (X),t) = A b7 (X). (2.27)

The expression given in (2.27) for the spatial acceleration may be unfamiliar to those
readers versed in fluid mechanics who may be more accustomed to thinking of
acceleration as thetal time derivative of the spatial velocity. We reconcile these
different viewpoints here through the introduction of the equivalent concept of the
material time derivative, defined, in general, as the time derivative of any object, spa
or material, taken so that the identity of the material particle is held fixed. Applying tt
concept to the spatial velocity gives:

a(x,t) = v(x,t)|,
d

dt

= 0(X 1)
V(e ((X 1), 1))

X fixed

(2.28)

Y x,t) 020, Hx), 1) + (9, Hx), t A

E@V+ []
Lv LV
(Ot [
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This may be recognized as the so-called “total time derivative” of the spatial velocity
Exercising the concept of a material time derivative a little further, we can se@fth
that the material velocity is the material time derivative of the motion, so that

V=0, (2.29)

Comparing Eq92.25)and(2.28), we can also conclude thatanda are, in fact, the same
physical entity expressed in different coordinates. The former is most naturally writte
terms ofV, while the latter is conveniently expressed in terms. of

One may see i(2.28)the superposed dot notation for the time derivative of . Such
superposed dots will always imply a material time derivative in this text, whether apf
to material quantities or, as in this case, spatial ones. It is further emphasized that tr
gradientl]v is taken with respect to spatial coordinates and is, therefore, called the
spatial velocity gradient It is used often enough to warrant a special symbol which w
denote a%.:

L = Ov. (2.30)

Theory Manuals (9/22/98) Nonlinear Continuum Mechanics - Rates of Deformation - Material and Spatial Velocity and Acceleration
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. known respectively as trspatial rate of deformation tensorand thespatial spin tensor
1]
Theory D = DSV = 1_[L +LT], (2.31)
Manuals 2
o i\ ._ and
Nonli _ _ T
Lol W= Ov= 2L -1, (2.32)
Mechanics
e It is clear thaD is merely the symmetric part of the velocity gradient, Wiile is the

antisymmetric, or skew, portion.

Rates of
Deformation The quantitied andlv are spatial measures of deformafion. is effectively a meas

< Go Back | strain rate suitable for large deformations, while provides a local measure of the r:
rotation of the material. In fact, it is readily verified that in small deformations, Eq. (2
amounts to nothing more that the time derivative of the infinitesimal strain tensor def
in (1.56) It is of interest at this point to discuss whether appropriate material counter
of these objects exist. Toward this end let us calculate the material time derivative of
deformation gradient F, noting in so doing that F is an analytic function, then the orde
of partial differentiation can be reversed:
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E = ait[aixq)(x,t )J - aix[aitq)(x,t )J = g—;/( (2.33)

From (2.33) we conclude that the material time derivdfive is nothing more than the
material velocity gradient. Manipulating this quantity further we find

ov _ 0., _ 0
ax = ax(Vo0) = OVe  (X)gg(d, (X)) o
= L(¢; (X))F(X)
Examination of (2.33) and (2.34) reveals that
L = (Feo, )F . (2.35)

Recalling the definition for the right Cauchy-Green strain te@sorEq.(2.15) we
compute its material time derivative via:

¢ = %[FTF] = ETE+FTE

: (2.36)
= (LF)TE+FT(LF) = FT(L+L")F
which in view 0f(2.31) leads us to conclude
C(X, t) = 2FT(X, t )D(d, (X), t )F(X t ). (2.37)
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In view of (2.37) %C IS sometimes called tmeaterial rate of deformation tensor.

Noting thatF is the Jacobian of the transformatipn , readers with a background ir

differential geometry will recogniz%C as the pull-back of the spatial tensoifield

defined ond, (Q) . Converselfd is the push-forward of the material tenso%ﬁ‘eld

defined onQQ . The concepts of pull-back and push-forward are outside the scope of
present investigation, but the basic physical principle they embody in the current cont
perhaps useful. Loosely speaking, the push-forward (or pull-back) of a tensor with re
to a given transformation produces a tensor in the new frame of reference that we, &
observers, would observe as identical to the original tensor if we were embedded in
material during the transformation. Thus the same physical principle is represented

both %C andD , but they are very different objects mathematically since the

transformation that interrelates them is the deformation itself. Recalling the definitior
Green’s strairE  given in E(R.20), we can easily see that

E = %c’: = FTDF. (2.38)

This further substantiates the interpretatioof as a strain rate as suggested earlie
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We have thus far developed measures of strain and strain rate appropriate for both t
spatial and reference configurations. Although it is not clear at this point why other
measures may be needed, let us consider appropriate definitions of these quantities
rotated configuration defined according to the polar decomposition and depicted
schematically irFigure 2.2 This can be readily done by extending the idea of pull-bac
and push-forward as discussed above, by applying to the linear transforgation rel
the rotated configuration to the spatial one.

Therotated rate of deformation tensorD is, therefore, defined via:

DX, t) = RT(X, t)D(p(X, t), t)R(Xt)

(2.39)
— RT(Doq))R
Noting that
C = 2FT(D°¢)F = 2UTRT(D°¢)RU = 2UTD U, (2.40)
we find
N P R S Y S P
D = EU CU+ = QC_ CC<, (2.41)
In connection with the rotated reference frame, another tehsor, ,is sometimes
introduced:
L = RRT. (2.42)
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Stress Measures

In this section we discuss the guantification of force intensity, or stress, within a bod
undergoing potentially large amounts of deformation. We begin with the Cauchy stre
tensorT, and note that provided we associate this object with the spatial configuration
object can be interpreted exactly as in the infinitesimal case outlih&ukimr Elastic
IBVP. In the current notational framework, we interpret the componeitsvafich we

shall denote a§ij , as representing forces per unit areas in the spatial configuratio

given spatial poink U ¢, (Q) .

It will be necessary in our study to consider related measures of stress defined in te!
the other configurations we have discussed, particularly the reference and rotated
configurations. To motivate this discussion, let us reconsider the concept of traction
discussed previously in the context of the infinitesimal elastic system. The reader ms
recall that given a plane passing through the point of interéle traction, or force per
unit area acting on this plane, is given by the formula

t.

= T n;, (2.44)

wherenj IS the unit normal vector to the plane in question.

Let us consider two differential vectody,;,  aid, , in such a plane passing throug

spatial poini, as indicated Ifrigure 2.3 We assume thatr , amlt ,  are linearly
independent from one another and that both differential vectorhaséheir base point.
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We further assume that their orientations are such that the following relation from ba
geometry holds:

dr , xdr, = nda, (2.45)

whereda Is the (differential) area of the parallelogram encompassdd,by dr and

dR;
Figure 2.3 Notation for derivation of Nanson’s formula.

As in the discussion iWleasures of Deformation(see Eq(2.5)), we can think of the

differential vectorsdr ; andr , as the current positions of reference differential vec

dR; anddR, , which are basedt q)t_l(x) . In indicial notation we can relate these

sets of differential vectors using the deformation gradient via:

(dr 1)i = F; (de)I, (2.46)
and
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(dr,). = Fy (dRy), . (2.47)

We now seek to reexpre€s45)in terms of reference quantities. Working in indicial
notation we can write

n,da = € ik FjJ (de)JFkK(dRZ)K
= €k 9 Fyy (dRy);F(@Ry), (2.48)
1
= ek FiL FLi Fyy (AR Fi (dRy)

Let us extract and work with a particular product in the last line of Eq. (2.48), namely
e FiL Fj; Fyk- One can show by a case-by-case examination that the following

relation holds:
€k Fi Fjs Fuk = eLak@ijk Fi1Fj 2Fka- (2.49)

The reader may recall fromMeasures of Deformationthatd = det(F) has the following
representation in indicial notation:

J = det(F) = ey F|1FjoFys. (2.50)

Combination of Egs. (2.48), (2.49), and (2.50) yields the following result:

n; da

1
Je | jkFii (dRy),(dR,),
. (2.51)

= JF i m dA
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In Eq.(2.51)dA is the differential reference area spanned By 0: 1370 masthe
reference unit normal to this area.

In direct notation we can express this result as

nda = JF 'mdA. (2.52)

Equation (2.52) is sometimes referred to as Nanson’s formula and it is important, an
other reasons, because it provides the appropriate change-of-variables formula for s
integrals in the reference and current configurations. In the current context we are ir
interested in computing the product of the traction acting on our planarat the
differential area under consideration. Denoting this differential foradf hyve may write

df =tda = Tnda = JTF ' mdA. (2.53)

In examining (2.53) we find that the following definition is useful

P(X) = J(X)T(9; (X))F_T(d)t (X)), (2.54)
which then allows us to write
df = PndA. (2.55)

In examining Eq. (2.55), we note that the prodeiot represents a traction, with the
physical interpretation of current force divided by reference area. TheRisesalled the
(First) Piola-Kirchhoff Stress, and like the associated Piola tractiBm;  , measures st
by referencing the force acting on areas to the magnitude of those areas in their
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undeformed configurations. The one-dimensional manifestation of this stress meast
the engineering stress.  , originally defined in @c3).

in the sense discussedRiates of Deformation it is worthy to note tha® is neither a
pure spatial nor a reference object. Such an object can be constructed by performin
pull-back of the spatial Cauchy stress teristw the reference configuration:

S(X) = IF1(0, (X)) T(d, ))FT(d, (X))
= F(¢, (X))P(X) |

S is called thesecond Piola-Kirchhoff stress tensor and it is a purely reference object
We note in particular th& is a symmetric tensor, while not symmetric, in general.

(2.56)

This same concept of pull-back can be employed to define a stress tensor in the rot:
configuration, which we shall denote &s . This rotated stress tensor is defined via:

T (6 (X)) = R'(¢; (X)T(d; (X))IR(d; (X)). (2.57)

As was the case with the rotated configuration quantities introdu¢tatenof
Deformation Tensors this definition will be of particular importance in the subsequen
examination of frame indifference.
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| ocalization

Suppose we consider an arbitrary volume of matevial,Q , In the reference
configuration of a solid body, as depictedrigure 2.4. Suppose further that we can
establish the following generic integral relation over this volume:

{f (X)dV = 0, (2.58)

wheref is some reference function, be it scalar, vector, or tensor-valued, defined o\

of Q. Suppose now that (2.58) holds true for each and every subvdlum@ of . Th
localization theorem then states that

f = 0 pointwise InQ. (2.59)

The interested reader should conga@lartin, M.E., 1981], Section 5 for elaboration on
this principle. It should be noted that the same procedure can be applied spatially. In

words, if we are working with a spatial object, we might consider arbitrary volumes
the spatial domain, and if the following holds for a spatial olgect for all

fa(x)dv =0, (2.60)

theng(x) = O throughoud, (Q)
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Conservation of Mass

In consideration of the conservation of mass, let us consider a fixed control velume,
the spatial domain, completely filled with our solid body at the instant in question as
body moves through it. We may write a conservation of mass for this control volume

_ 0p
—J\'Ipv [(hda = J/’a—tdv, (2.61)

where the term on the left can be interpreted as the net mass influx to the control vo
and the right-hand side is the rate of mass accumulation inside the control volume.
Applying the divergence theorem to the left-hand side gives

_ (0p
—ID [p v)dv = Iﬁdv. (2.62)
\Y \'
This can be further rearranged to yield
9P _
JDT% [V +p(0/)=dv = 0, (2.63)

which can be established for any arbitrary spatial volume . Applying the localizatiol
theorem gives the local expression of continuity, which may be familiar to those vers
fluid mechanics:
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g_fm) G +p(0) = p+p(00v) = 0, (2.64)

where the concept of the material time derivative has been employed ((&.28).

A reference configuration representation of continuity is also highly desirable, espec
In the study of solid mechanics. Therefore, we conZeéi3)to a reference configuration
integral and obtain:

[ (b+ oE:F )JdVv = 0, (2.65)
V= 6y (v)
where the transformation betweédn amd IS accomplished (&g and the

chain rule is used to convert [/ via

Vi (%) = 20V (07()

_ 0 -1 oxX, 1 , (2.66)
= in (9, (X))W(cbt (X))

= By (07 CO)Fy (07 (x))

which the reader will recognize as the indicial notation form:ef . Applying the
localization theorem in the reference configuration gives
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" P p ( )

SEACAS which holds pointwise i
Library
Working in indicial notation we can work further to simplify (2.67) by concentrating ol

I"“ the termJ F:F ' . Let us compute the material time derivativé of as follows:
Theory

Manuals _ 8] _

J = Fmm (2.68)

i) r : aFmM
Jerinear -1 Calculation ong is achieved via
Mechanics mM

el 0J )

= (€ Fi1Fj2Fka)
Balance al:mM aFmM ! ! J
Laws _
< Go Back = €jjk O%imOmuFj 2Fks

* €k Ojm OmeFi 1Fk3 T ik OkmOnsFi 1F; 5
= €k Fin Fﬁlnf’wu':j 2F3

e Fin Fﬁlnﬁmz':i 1Fk3

ek R Eines 1K 5

which can be further simplified to yield

, (2.69)
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0J

= JF, 6 +JF, 6 +JF, 6
aFmM im 2m 3m
= JF 13 o
=J mi = JF vm
Substitution intq2.68) gives
- S
J = JF i mm
which is nothing more than the indicial form of
J =JFE
Substitution intq2.67)gives
pJ +pJ = i(pJ) = 0.
dt

(2.70)

(2.71)

(2.72)

(2.73)

Equation (2.73) is the reference configuration version of the continuity equation and
us that the product of the density and deformation gradient determinant must be inv:
with time for all material points. This is commonly enforced in practice by assigning

reference densitp, to all material points. If the current depsity

_ 1
p_3p01

Nonlinear Continuum Mechanics - Balance Laws - Conservation of Mass

IS always compute

(2.74)



e then Eg. (2.73) is automatically satisfied (recall that the Jacdbian is unity in the
MM reference configuration).
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Conservation of Linear Momentum

Considering once more a fixed control volume , the control volume balance of line:
momentum can be expressed as

J(pv)v hda +I%(pv)dv = [f dv i da. (2.75)

The first term on the left expresses the momentum outflux, while the second represe!
rate of accumulation inside the control volume. This net change of momentum is proc

by the total resultant force on the system, equal to the sum effect of the body force
the surface tractions

Applying the divergence theorem to both surface integrals, we find
J(pv)v [(hda = I[D 6 v)v +p(0v)v]dyv, (2.76)
\' Y

and

tda = (Tnda = (0OOrdv. (2.77)
A

Substituting (2.76) and (2.77) into (2.75) and rearranging gives
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<—

ov

O Or +f1 —p—t—p(Dv)v

_9%
ot

0

v—(Ip v)v-—p(OOv)v

dv

(2.78)

Employing the spatial form of the continuity equation (E®3) and recalling the
formula for the material time derivative (E3.28) gives

I[DDT+f —pv]dv = 0.
Y

By the localization theorem this implies

OOr+f= pv

(2.79)

(2.80)

pointwise, which is recognized as the same statement of linear momentum balance u
In our earlier treatment of linear elasticity.

In large deformation problems it is desirable to also have a reference configuration fo
(2.80). Converting (2.79) to its indicial form we have

[ITy;, +fi—pvildv = 0.

\'

(2.81)

Working with the stress divergence term first we write
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oT; 90X, _ oT,

= - __ 0t
i 9%, 9%, _ 9%, Fii - (2.82)
Using Eq.(2.54)we can write
oT;: 0 1
- L L
X, ~ X, i
; (2.83)
_ 183 9Fyk 10
" J20F 0%, Pir By +Jm(P“ Fir )
Using Eq.(2.70)we can simplify (2.83) and postmultiply I’Ey]_jl to obtain:
oT: _ 1 __40F 10P; 1 __10F;
L T el N Y LR T il L )
ax, I T 3 kikgx, i Tyax T3taax, i (2.84)
The first and last terms on the right-hand side of (2.84) cancel each other due to the
thato = 9 Theref h
aax —m . Therefore, we have

il = bl
3% K = Jax - (2.85)

Using this result and applying a change of variabl€&.&i)gives
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[Py, +F —pgVi)dV = 0, (2.86)
V

whereF; = Jf . , the prescribed body force per unit reference volume. Employing tl
localization theorem gives

DIVP+F = poV (2.87)

pointwise inQ , which expresses the balance of linear momentum in terms of referel

coordinates. In (2.87) we have used the notdiibh to indicate the divergence ope
applied in reference coordinates.
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Conservation of Angular Momentum

Considering once more an arbitrary control volume in the spatial frame, we can write
balance of angular momentum via

J’(x x pv)v [hda +Iait(x xpv)dv = J'(x xf )dv +5[x xt da, (2.88)

Vv

where the terms on the left-hand side are the outflux and accumulation terms, while
terms on the right-hand side represent the total resultant torque.

Working this time in indicial notation, we apply the divergence theory to the surface
integrals as follows:

OP | €k Xi ViV +en PO VvV, [
Jeijk PX; ViV N da = = S ! J Odv, (2.89)
v vE®ijk PXj ViV e PX; Vv O

and

V \Y

Substituting (2.89) and (2.90) into (2.88) and rearranging terms reveals that:
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-:X

e
000

e

dv = (2.91)

+ €jjk Tkj _peijk Vi Vi

oV, avk
«~Par ~Pax, V! %
0
0
0
0

< ey
DDDDDDDQD

[

Using Egs(2.81)and(2.64)and noting that the cross product of a vector with itself is
zero, we can simplify Eq. (2.91) and apply the localization theorem to conclude

which, in turn, implies the following three equations:
Toz = T3p T13= T3y, Tog = Ty (2.93)

In other words, the symmetry of the Cauchy stress tensor is a direct consequence o
conservation of angular momentum. Use of EZ$&6)and(2.57) respectively, easily

reveals that the Second Piola Kirchhoff strfss and the rotated stressitensor  art
likewise symmetric. The First Piola Kirchhoff stress is not symmetric and is not, in fa
tensor in the purest sense since it does not fully live in either the spatial or reference
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Stress Power

Finally, we examine the consequences of a control volume expression of energy bal
We assume herein a purely mechanical description and assume, to begin, that there
mechanical dissipation, so that the system we consider conserves energy exactly. Ir
words, all work put into the system through the applied loads goes either into stored
internal elastic energy or into kinetic energy.

With this in mind the conservation of energy for a spatial control volume is written as

5]'89 +%pv H/Ev [h da +IaitBe + %pv D/%dv
v Y , (2.94)
= %‘f Vdv +5[(Tn)EVda%

V V

wheree is the internal stored energy (i.e., elastic energy) per unit spatial volume.

As we have done previously, we apply the divergence theorem to the surface integre
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I
< ey

and

1 0
+ épv D/Dv [h da

DEVBS+%pV W+ Oe v

+%m> (v ) + pv [(Dv)v_

dv

Jt M da = I[T:Dv+(D [T) O] dv .

Substituting (2.95) and (2.96) in{@.94)and rearranging gives

ov

(O Oar +f —pa—t

—p(Ov)v) Ly

1
2 (5t

L +T:Ov—-e(0v)—e

Using Eqs(2.81)and(2.64)we find

0= J’[T:Dv —e(v)—e]dv.

Splitting (2.98) into two integrals we have

vw[@f+p(Dﬂl)+m) EVE

dv .
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0= IT:Dvdv—I(e (U 0v)—e)dv. (2.99)

We now wish to convert (2.99) to the reference configuration and apply localization. |
doing we recognize that the second integral in (2.99) can be treated directly analogot

that of Eq.(2.63) with the density irf2.63)being replaced by the energy in the currel
case. The result of this manipulation will lead to a term form identical to the (233

with e substituted fop . In other words, we have

[(e(Ov)—é)dv = 5£(e\])dv. (2.100)

\Y

Concentrating on the first integral and using EK5)and(2.68)to aid in the
calculation, we find

[T:Ovdv = I(Tocl)_l):(Loq)_l)J dv
Y, V
. (2.101)
= I(T°¢_1):(FF_1)J dV = [P:FdV
V V

Combining these results and employing the localization theorem, we conclude that

%(eJ) = E = P:F (2.102)
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pointwise INQ , wherd& is the stored elastic energy per unit reference volume. There

P:F represents the rate of energy input into the material by the stress (per unit volur
commonly known as th&tress power Taking into account the various measures of stre
and deformation rate we have considered, it can be shown that for a given material |
the stress power can be written in the following alternative forms:

Stress power P:F= %SC% =JT:D=JT:D . (2.103)

It should be noted that this definition can be used also for dissipative (i.e.,
nonconservative) materials but that the interpretation becomes different: the stress f
In this case is the sum of the rate of increase of stored energy and the rate of energ
dissipation by the solid.
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Frame Indifference

An important concept to be considered in the formulation of constitutive theories in |:
deformations is that of frame indifference, alternatively referred to as objectivity.
Although somewhat mathematically involved, the concept of objectivity is fairly simple
understand physically.

When we write constitutive laws in their most general forms, we seek to express ten
guantities, such as stress and stress rate, in terms of kinematic tensoral quantities, |
commonly strain and strain rate. The basic physical idea behind frame indifference i
this constitutive relationship should be unaffected by any rigid body motions the mat
may be undergoing at the instant in question. Mathematically we describe this situati
defining an alternative reference frame that is rotating and translating with respect tc
coordinate system in which we pose the problem. For our constitutive description to |
sense, the tensoral quantities we use in it (stress, stress rate, strain, and strain rate)
simply transform according to the laws of tensor calculus when subjected to this
transformation. If a given quantity does this we say it is material frame indifferent, anc
does not we say it is not properly invariant.

Consider now a motioy(X,t ) .We imagine ourselves to be viewing this motion fro
another reference frame, denoted in the following by *, which can be related to the
original spatial frame via

xU=c(t)+Qt)x, (2.104)
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wherex = ¢(X, t) .In(2.104)c(t ) is a relative rigid body translation between the
original frame and observer *, while a relative rotation is produced by the proper

orthogonal tenso@(t ) . To observer * the motion appears as defined by

xU=¢UX t) =c(t)+Q(t)d(Xt). (2.105)
Then for the * frame, we can define an appropriate deformation gradient:
X't X"t

and a spatial velocity gradiebt

L* = 00 = FOFD™ = S(QR(ep™
| (2.107)

= (OFF QT + QOVFF Q")

which can be simplified to

L* = QLT +OQT. (2.108)

ForL= [lv to be objective, it would transform according to the laws of tensor
transformation between the two frames, so that only the first term on the right-hand s

(2.108) would be present. Cleatly= [lv IS not objective.

Examining the rate of deformation tensor, on the other hand, one finds:
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EACA - .

Library — 'Z[QI—QT + QQT + Q( I—)TQT+ Qd]

NI One can also show that

Theory ST : d d

Manuals QQT+QQ = E[Qd] = E[I ] =0, (2.110)
i l| so substituting this result into (2.109) gives

Nonlinear

Connu 00 = PIL +LT1Q" = QDG, ey

- -

which shows us thdd is objective.

|nd|i:fl}2:2ice Therefore, we have a spatial rate-of-strain object, , that is objective. The question :

< Go Back | about whether corresponding reference measures of rate are objective. It turns out t
such material rates are automatically objective, since they do not change when
superimposed rotations occur spatially. Consider, for example, the right Cauchy-Gre

tensorC :

cd= (FOT(FD = FTQ'QF = C (2.112)

In view of (2.112) it is obvious that

cl=c¢. (2.113)

Theory Manuals (9/22/98) Nonlinear Continuum Mechanics - Frame Indifference - Frame Indifference



M
SEACAS
Library

I“-"‘-

Theory
Manuals

Nonlinear
Continuum
Mechanics

- -

Frame
Indifference

< Go Back

Turning our attention to stress rates, let us examine the material time derivative of th
Cauchy stres$

T = [£(T°¢t)J - ¢t‘1 = E?‘TT+V EDTE (2.114)

Now T is itself objective by its very definition as a tensoral quantity. Thus we can wri

TO= QTQ. (2.115)

Computing the material time derivative of (2.115) we find

T* = QTQ"+QTQT +QTQJ. (2.116)

Since the first and third terms on the right-hand side of (2.116) do not, in general, ce
we see that the material time derivative of the Cauchy Sfress is not objective.

It, therefore, becomes critical, when a constitutive description requiring a stress rate
be formulated, to consider a frame indifferent measure of stress rate. A multitude of
rates have been contrived; the interested reader is encouraged to[teasalen, J.E.
and Hughes, T.J.R., 1983ior a highly theoretical treatment. For our discussion here \
consider two such rates, especially prevalent in the literature: the Jaumann rate and
Green-Naghdi rate. Both rates rely on roughly the same physical idea: rather than te
the derivative of the Cauchy stress itself, we rotate the object from the spatial frame
taking the time derivative, so that the reference frame in which the time derivative is t
Is the same for all frames related by the transform@fidi04)
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For example, let us consider the Jaumann rate of stress, which we denotelhere as
definition is given as follows:

T=T-WT+TW (2.117)

We can verify that this rate of stress is truly objective by direct calculation, by conside
the object as it would appear to observer *:

~ -

T* = T* —WFT* + T*W. (2.118)

The quantityf* IS given b{2.116) T* is given by(2.115) andW can be computed
with the aid of(2.108)and(2.111)

W = L*-D*= QLQ +OQ' —QDQ. (2.119)
Substituting these quantities into (2.118) we find

T = QT +QTQ"+QTd
~(QLQ +&Q' -QDQ)QTJ . (2.120)
+QTJ(QLQ +4Q' -QDQ)

Canceling terms and using the fact t@e}T = —QQT , we can simplify (2.120) to

T+ = QQT-WT+TWQ' = QTQ", (2.121)
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which ensures us that, indeé’d, IS objective.

In consideration of the Green-Naghdi rate we, perhaps, gain more insight into how
objective rates can be designed. The Green-Naghdi rate of Cauchy stress is definec

T = RTR, (2.122)

whereR is the rotation tensor from the polar decompositida of Jand is the rotat
Cauchy stress defined (R2.57)

Let us examine how the rotation tensbr transforms. Recallin(RE®6)we can write
F*=R*U* = QF = QRU (2.123)

We now note two things: first, that the prodQdR IS itself a proper orthogonal tensol
second, that the polar decomposition is unique for a given deformation gradient.
Therefore, comparing the second and fourth terms of (2.123), we must conclude:

U* = U’ (2124)

and

R* = QR (2.125)
Using Egs. (2.125) and (2.122) we can compute:

T* = R*T*R*' = QRT*R'Q". (2.126)
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Returning to the definition of  in E(R.57)and incorporating Eq§2.115)and(2.125)
we can write

T*=R*'T*R=R'Q'(QTJ)QR= RTR=T. (2.127)

Therefore, the rotated stress tensor appears exactly the same in both frames of refer
follows that

T* = T, (2.128)
which, when substituted into (2.126), gives

T*=QRI R'Q' = QTQ', (2.129)
which is recognized as nothing more than the properly objective transformafion of

One may note that result (2.128) gives considerable insight into how objective rates c
constructed. In the current case we transform the stress into the rotated configuratic
before computing its time derivative, and then transform the result back to the spatis
configuration. Since the rotated stress is exactly the same for all reference frames re
by (2.104) taking the time derivative of it and then transforming produces an objectiv
object. This idea can be generalized as follows: construction of an objective rate of s
IS achieved by considering the time derivative of a stress measure defined in a coor
system that is rotating about some set of axes. In fact, one can show that the Jaume
stress rate can be similarly interpreted.
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Finally, the Green-Naghdi rate can be manipulated further to a form resembling mor
closely the form given for the Jaumann rate (dL17). We may write

~

o~ d T T
T = Rd_t(R TR)R

RRT+T+TRR' (2.130)

T+L'T+TL
= T+TL-LT

where we have used H&.42)to defineL |, recalling also that this object is skew.
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Plane Strain

The so-called plane strain assumption is appropriate when the following conditions t
1) the object of interest can be geometrically described in a two-dimensional manne
example, by considering a cross section of a very long object); 2) once so idealized,
loads on the structure act in the direction normal to the two-dimensional plane select
no significant displacement occurs normal to this plane; and 4) the variation of any
guantity (stress, strain, displacement, etc.) in the direction normal to the plane can h
neglected. Conditions 3) and 4) require that all out-of-plane strain components be ze
giving rise to the namglane strain.

The reader should refer Fagure 2.5for the notational framework we will use. We

associate the third index, = 3 , (i.e., the z-coordinate) with the out-of-plane directic
All of the continuum mechanical concepts we have developed for the three-dimensic
case can then be straightforwardly applied to the current situation. We note that in tv
dimensions, one simply considers the large deformation boundary value problem
summarized inLarge Deformation Problemsto be defined over a two-dimensional

domain with the unknown motiopp  having two components rather than three.

Note that, in general, it is necessary, however, to keep track of some stress compon
associated with the third dimension. This comes about due to the coupling between
plane strains and the out-of-plane stresses. For example, considering infinitesimal
elasticity for a moment, we have the following strain components equal to zero:

E; = Epg = Egq = 0. (2.131)
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If the elastic response is isotropic, we can use EdS9)and(1.62)to conclude that

T3 = Ty =0, (2.132)
but also that
T3 = AM(Ej+ E,y) 0. (2.133)
¢

o O\ O\

X1

Figure 2.5 Two-dimensional notation for plane stress and plane strain cases.
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Plane Stress

The plane stress assumption is appropriate when the following set of circumstances
1) the object of interest can be geometrically described in a two-dimensional manne
once so idealized, no loads on the structure act in the direction normal to the two-
dimensional plane selected; 3) no significant internal stress is generated in the direc
normal to this plane; and 4) the variation of stress, strain, and in-plane displacement
direction normal to the plane can be neglected. Condition 3), in particular, makes thi
idealization most appropriate for thin, flat objects subject to in-plane loads. The fact
nonzero stresses are assumed to lie within the plane gives rise to thelaraersress

The notation given ifrigure 2.5is appropriate for this class of problems, and as was t
case In plane strain, we simply specify the problem as a two-dimensional boundary

problem solving for the two-vectdr . Again, however, in describing the constitutive
relations some knowledge of the third dimension must be maintained. Considering a
the linear elastic case for simplicity, we have

Ti13 = Ty3 =T33 =0, (2.134)
from which we can conclude (for isotropy) that
E;3 = Exg =0, (2.135)

but also that
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Axisymmetry

An axisymmetric formulation is useful when an object possesses an axis of symmetr
when the loading, boundary conditions, and response are invariant with respect to ra
about this axis. Under these circumstances it is convenient to construct a coordinate

system,(r ,z ) , as shown in Figure 2.6.

¢

o O\ O\

r

Figure 2.6 Notation for an axisymmetric problem ¢ is the axis of symmetry). The actual three-
dimensional object is obtained by rotating the above cross sections 360 degrees about
the z-axis.

An in-depth treatment of axisymmetry is beyond the scope of our current treatment.
main idea is that our coordinate system is no longer Cartesian but is instead curvilin
For reference we consider again the infinitesimal case. We consider a displacement

u=_,", (2.137)
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and find that the appropriate expressions of strain are now

_Ou, _ _Ou, 0du,
B T E,g=0 E, “ 9z  or

U _ _0u,
Egg=7 B, =0 E "9z

The stress-strain relations are still as given by(E9) i.e.

T = CE.

(2.138)

(2.139)

The differential equations of equilibrium do need to be rewritten, however, due to the
special form of the stress divergence resulting from the curvilinear coordinate system
finds the following to be the appropriate expressions of linear momentum balance fo

axisymmetric problems:

0T oT T, +T --
a_rrr _I_a_zrz 4 r 66+fr = pu,
aTrz aTzz Trz N

S S == 0

or 0z r z = PYz

Nonlinear Continuum Mechanics - Two-Dimensional Formulations - Axisymmetry
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Introduction

Most discussion in this report has been primarily concerned with the description of
deformation and stress in fully three-dimensional bodies. It is frequently desirable in
mechanics to describe entities that are comparatively thin in at least one spatial dire
and perhaps in two. The former case is commonly referred to as a shell or plate (dep:t
on whether the entity is initially curved or flat), and the second case is referred to as
beam or truss (depending upon whether bending is to be considered). In this sectior
briefly discuss how the continuum mechanical framework we have constructed can |
adapted to these situations.
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The Degenerated Solid Approach

We consider initially a thin plate- or shell-like object, described schematically as shov
Figure 2.7. We consider that there is one spatial dimension, the through-the-thickne:
direction, that is much smaller than the characteristic in-plane dimensions of the obj

Figure 2.7 Schematic of a generic plate or shell object shown in the reference configuration.

One could consider the ordinary three-dimensional formalism to apply pointwise witt
this solid, leading to a boundary value problem written in terms of all three displacen

componentsl; . When analyzing shells, however, we become interested in writing tl

equations in terms of only the midsurface position, denotéd as in the figure, and tl
rotations of unit vectorg5 that are normal to this surface in the reference configura
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We can, therefore, express any reference point in the shell in terms of the midsurf
positionP and the unit vector:

X = P+ZE,, (2.141)

whereZ is a through-the-thickness coordinate ranging betw%en té and . The qua

t Is the local thickness of the shell referencedPby

As readers familiar with solid mechanics will be aware, the equations governing struc
objects are conveniently written in terms of so-called stress resultants, or net momel
torques, and forces, acting across cross sections. In the degenerated solid approacl
takes the fully three-dimensional equations of motion and performs through-the-thick

integration in terms of the appropriate coordinate (in this £ase ) to obtain governing
equations in terms of the midsurface displacements of gdints and rotations of vec
E..

3

If the deformation is infinitesimal, so that reference and current coordinates are the :

and changes in the thicknelss are insignificant, we obtain the shell equations of
equilibrium by calculating

t

2 4 az -

I[D [T +f +—p—ZDdZ = 0. (2.142)
[ ot L
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Plates and Shells

In addition to the concept of a degenerated solid, another important aspect of plate :
shell formulations is the specific kinematic description used to quantify displacemen
Referring again té-igure 2.7, we describe the configuration mapping for any point in tl

shell in terms of the midsurface displacem@nt  and the normal vector ratation
¢(X) = ®(P)+Zq xE4 (2.143)

where we have actually made two kinematic assumptions: first, that the through-the-
thickness deformation is negligible so t@at is the same coordinat¢2as4t) and
second, that normals to the midsurface (Eg., ) remain straight, although not neces

normal. This assumption leads to Mindlin plate theory where the rotation of vegtors

with respect to the reference surface gives rise to transverse shear strains and stres
the material.

Examining Eq. (2.143) we see that there are three dependent variables associated v
mapping® and three, in general, associated with the rotgtion . However, we gene
discard the component gf  producing rotation altout . Thus, in general, there are

dependent variables we seek to find in a plate or shell boundary value problem.
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Beams

Beams can be considered within this framework also by considering two transverse
dimensions to be small when compared to the remaining one (i.e., beam length). Th
rather than degenerating in one spatial dimension to obtain the resultant-based equil
equations (as i(2.142), we integrate in two. The result is usually a system with six
dependent variables, described in terms of a one-dimensional object (a reference lir
rather than surface, in this case). Three of these correspondto/thendz -components
of the reference line displacement, and the other three correspond to rotations.

Theory Manuals (9/22/98) Nonlinear Continuum Mechanics - Structural Components - Beams



P
M

SEACAS
Library

I“-"‘-

Theory
Manuals

Nonlinear
Continuum
Mechanics

Il;le

Balance
Laws

Stress
Measures

Introduction Measures of Rates of
Deformation Deformation

Frame Two Structural Rigid
Indifference Dimensional Components Bodies
Formulations

Rigid Bodies
Rigid Bodies

< Go Back

Blue text
indicates

a link to more
information.

Theory Manuals (9/22/98)

Nonlinear Continuum Mechanics - Rigid Bodies



M
SEACAS
Library

I“-"‘-

Theory
Manuals

I i‘i

Nonlinear
Continuum
Mechanics

- -

Rigid Bodies

< Go Back

Rigid Bodies

Finally, it will be desirable in some problems to be able to incorporate the equations
motion into a system in which some bodies or entities are rigid (i.e., no deformation
allowed to occur within some reference dom@in ). In this case, one has the followit
of governing equations from rigid body dynamics:

> Fy = Ma
2 Fy = My
> F, = Mg,

SM =130 —(1 ;=1 3) 0w (2149
M = 1w —(1 5= ) wgwy,
M =1 gwg—(1 =1 p)wy 0,

where the subscripts, y, andz refer to global (reference) coordinates, and subsckipts
2, and3 refer to the principal directions of the inertia tensor fixed to the solid. The

quantitiesl ; | , ,antl; are the principal values of the inertia tensor, and the s al
components of angular velocity in the principle directions. We will return to the

implementation of these equations when discussing finite element methods in a
companion report.
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